Notations
We use upper-case sans serif letters, e.g., $\mathsf{Z}$ to denote
random variables
withsample spaces
denoted as $\mathcal{Z}$.$p_{\mathsf{Z}}$ denote the distribution of $\mathsf{Z}$, which is a
propability density function
if $\mathsf{Z}$ is continuous. $P_{\mathsf{Z}}$ denotes theprobability measure
.$\mathcal{P}(\mathcal{Z})$ denotes the set of all
probability measures
over theBorel σ-algebra
on $\mathcal{Z}$.$E[\mathsf{Z}]$ denotes the
expectation
of $\mathsf{Z}$.
Let $(\mathsf{Z}_1,\mathsf{Z}_2,\cdots,\mathsf{Z}_n)$ be $n$ i.i.d. copies of $\mathsf{Z}$.
We use $\mathsf{Z}^n$ to denote the sequence $\{\mathsf{Z}_1,\mathsf{Z}_2,\cdots,\mathsf{Z}_n\}$.
$|\cdot|$ denotes the
Euclidean norm
of a vector.
Notation for differentiation
wikipedia: https://en.wikipedia.org/wiki/Notation_for_differentiation
- When taking the derivative of a dependent variable $y = f(x)$:
$$\frac{\dot{y}}{\dot{x}}=\dot{y}: \dot{x} \equiv \frac{d y}{d t}: \frac{d x}{d t}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{d y}{d x}=\frac{d}{d x}(f(x))=D y=f^{\prime}(x)=y^{\prime}$$
The value of the derivative of $y$ at a point $x = a$ may be expressed in two ways using Leibniz’s notation: $$\frac{d y}{d x}\bigg|_{x=a} \text{ or } \frac{d y}{d x}(a)$$
Some people also prefer useing roman type $\mathrm{d} x$ instead of italic $dx$.
Partial derivatives: $$\frac{\partial f}{\partial x}=f_x=\partial_x f; \frac{\partial}{\partial y}(\frac{\partial f}{\partial x})=\frac{\partial^2 f}{\partial y \partial x}$$
The gradient operator can be written as $$\nabla =\bigg(\frac{\partial}{\partial y_1},\cdots,\frac{\partial}{\partial y_L}\bigg)^T$$
Big O in Probability notation
wikipedia: https://en.wikipedia.org/wiki/Big_O_in_probability_notation
$\mathsf{X}_n=o_p(a_n)$ can be written as $\frac{\mathsf{X}_n}{a_n}=o_p(1)$.
$\mathsf{X}_n=o_p(1)$ is defined as $\lim_{n\rightarrow \infty}P(|\mathsf{X}_n|\geq\epsilon)=0$
By $O(1)$, we denote positive absolute constants. The notation $\lfloor a\rfloor$ stands for the largest integer less than or equal to $a \in \mathbb{R}$ and $\lceil a\rceil$ for the smallest integer greater than or equal to $a \in \mathbb{R}$.